p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.19C42, C23.24M4(2), C22⋊C8⋊4C4, (C22×C4)⋊1C8, C22.1(C4×C8), (C23×C4).1C4, (C22×C4).3Q8, C22.2(C4⋊C8), C2.1(C23⋊C8), C23.25(C2×C8), C23.36(C4⋊C4), C24.103(C2×C4), (C22×C4).636D4, (C23×C4).1C22, C22.1(C8⋊C4), C22.33(C23⋊C4), C22.32(C22⋊C8), C2.1(C23.9D4), C2.1(C22.C42), C23.213(C22⋊C4), C22.23(C4.D4), C22.14(C4.10D4), C2.9(C22.7C42), C22.21(C2.C42), C2.1(C22.M4(2)), (C2×C4).66(C4⋊C4), (C2×C22⋊C8).1C2, (C22×C4).89(C2×C4), (C2×C4).290(C22⋊C4), (C2×C2.C42).1C2, SmallGroup(128,12)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.19C42
G = < a,b,c,d,e | a2=b2=c2=e4=1, d4=c, dad-1=ab=ba, ac=ca, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=abd >
Subgroups: 280 in 132 conjugacy classes, 52 normal (18 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C2×C8, C22×C4, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C22⋊C8, C22×C8, C23×C4, C23×C4, C2×C2.C42, C2×C22⋊C8, C23.19C42
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C2.C42, C4×C8, C8⋊C4, C22⋊C8, C23⋊C4, C4.D4, C4.10D4, C4⋊C8, C23⋊C8, C22.M4(2), C22.7C42, C23.9D4, C22.C42, C23.19C42
(1 57)(2 33)(3 59)(4 35)(5 61)(6 37)(7 63)(8 39)(9 18)(10 54)(11 20)(12 56)(13 22)(14 50)(15 24)(16 52)(17 43)(19 45)(21 47)(23 41)(25 38)(26 64)(27 40)(28 58)(29 34)(30 60)(31 36)(32 62)(42 51)(44 53)(46 55)(48 49)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(17 52)(18 53)(19 54)(20 55)(21 56)(22 49)(23 50)(24 51)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 41 57 23)(2 51 58 15)(3 16 59 52)(4 18 60 44)(5 45 61 19)(6 55 62 11)(7 12 63 56)(8 22 64 48)(9 30 53 35)(10 36 54 31)(13 26 49 39)(14 40 50 27)(17 29 43 34)(20 37 46 32)(21 25 47 38)(24 33 42 28)
G:=sub<Sym(64)| (1,57)(2,33)(3,59)(4,35)(5,61)(6,37)(7,63)(8,39)(9,18)(10,54)(11,20)(12,56)(13,22)(14,50)(15,24)(16,52)(17,43)(19,45)(21,47)(23,41)(25,38)(26,64)(27,40)(28,58)(29,34)(30,60)(31,36)(32,62)(42,51)(44,53)(46,55)(48,49), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,52)(18,53)(19,54)(20,55)(21,56)(22,49)(23,50)(24,51)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,41,57,23)(2,51,58,15)(3,16,59,52)(4,18,60,44)(5,45,61,19)(6,55,62,11)(7,12,63,56)(8,22,64,48)(9,30,53,35)(10,36,54,31)(13,26,49,39)(14,40,50,27)(17,29,43,34)(20,37,46,32)(21,25,47,38)(24,33,42,28)>;
G:=Group( (1,57)(2,33)(3,59)(4,35)(5,61)(6,37)(7,63)(8,39)(9,18)(10,54)(11,20)(12,56)(13,22)(14,50)(15,24)(16,52)(17,43)(19,45)(21,47)(23,41)(25,38)(26,64)(27,40)(28,58)(29,34)(30,60)(31,36)(32,62)(42,51)(44,53)(46,55)(48,49), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,52)(18,53)(19,54)(20,55)(21,56)(22,49)(23,50)(24,51)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,41,57,23)(2,51,58,15)(3,16,59,52)(4,18,60,44)(5,45,61,19)(6,55,62,11)(7,12,63,56)(8,22,64,48)(9,30,53,35)(10,36,54,31)(13,26,49,39)(14,40,50,27)(17,29,43,34)(20,37,46,32)(21,25,47,38)(24,33,42,28) );
G=PermutationGroup([[(1,57),(2,33),(3,59),(4,35),(5,61),(6,37),(7,63),(8,39),(9,18),(10,54),(11,20),(12,56),(13,22),(14,50),(15,24),(16,52),(17,43),(19,45),(21,47),(23,41),(25,38),(26,64),(27,40),(28,58),(29,34),(30,60),(31,36),(32,62),(42,51),(44,53),(46,55),(48,49)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(17,52),(18,53),(19,54),(20,55),(21,56),(22,49),(23,50),(24,51),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,41,57,23),(2,51,58,15),(3,16,59,52),(4,18,60,44),(5,45,61,19),(6,55,62,11),(7,12,63,56),(8,22,64,48),(9,30,53,35),(10,36,54,31),(13,26,49,39),(14,40,50,27),(17,29,43,34),(20,37,46,32),(21,25,47,38),(24,33,42,28)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | - | + | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D4 | Q8 | M4(2) | C23⋊C4 | C4.D4 | C4.10D4 |
kernel | C23.19C42 | C2×C2.C42 | C2×C22⋊C8 | C22⋊C8 | C23×C4 | C22×C4 | C22×C4 | C22×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 2 | 8 | 4 | 16 | 3 | 1 | 4 | 2 | 1 | 1 |
Matrix representation of C23.19C42 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 5 | 8 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
3 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 6 | 13 | 10 | 1 |
0 | 0 | 0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 5 | 0 | 4 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 10 | 15 | 6 |
0 | 0 | 0 | 0 | 15 | 0 | 8 | 2 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,1,0,8,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[3,5,0,0,0,0,0,0,15,14,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,3,15,0,0,0,0,0,0,0,0,0,6,16,1,0,0,0,0,0,13,15,5,0,0,0,0,1,10,0,0,0,0,0,0,0,1,0,4],[13,5,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,6,14,2,15,0,0,0,0,6,11,10,0,0,0,0,0,0,0,15,8,0,0,0,0,0,0,6,2] >;
C23.19C42 in GAP, Magma, Sage, TeX
C_2^3._{19}C_4^2
% in TeX
G:=Group("C2^3.19C4^2");
// GroupNames label
G:=SmallGroup(128,12);
// by ID
G=gap.SmallGroup(128,12);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,570,248]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^4=1,d^4=c,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*d>;
// generators/relations